
1 

In	this	lecture,	we	will	examine	how	the	CPU	or	microprocessor	actually	execute	
programs	–	the	internal	working	of	a	computer.	



In	the	last	lecture	we	have	looked	at	the	overall	structure	of	a	computer,	which	has	
three	main	components:	CPU,	memory	and	IO,	all	connected	together	via	three	
buses:	address	bus,	data	bus	and	control	bus.	
In	this	lecture	we	will	look	at	the	CPU	in	some	detail.			
A	CPU	has	a	number	of	modules	inside.	These	include	a	arithmetic	and	logic	unit,	a	
control	unit	and	at	least	one,	but	usually	many	more,	registers.	

Remember	registers	are	just	a	bunch	of	D-FFs.	
Modern	computers	and	microprocessors	are	based	on	the	von	Neumann	model	
which	uses	memory	to	store	both	the	instruction	codes	(i.e.	the	program)	and	the	
data.	
It	is	important	to	remember	and	understand	that	if	you	could	open	the	top	of	a	
memory	chip	and	read	the	values	stored	inside	the	chip,	you	will	see	‘1’s	and	‘0’s.		
What	they	mean	depends	on	where	they	are	stored	and	the	context.		You	cannot	
tell	by	just	looking	at	memory	which	word	is	an	instruction	word,	and	which	word	is	
data.		For	that,	we	need	some	other	information.	

2 



If	you	look	inside	a	simple	CPU,	you	are	going	to	find	these	modules:	
PC	=	Program	Counter	–	it	stores	the	address	of	the	NEXT	instruction	to	be	

executed	
IR	=	Instruction	Register	–	It	stores	the	current	instruction	binary	code	(called	

machine	code)	to	be	executed		
ALU	=	Arithmetic/Logic	Unit	–	It	performs	the	actual	arithmetic	or	logical	

operations	
ACC	=	Accumulator	(or	result	register)	–	It	stores	the	temporary	data	or	result	

In	modern	CPUs,	there	are	many	other	modules.	For	example,	instead	of	having	only	
one	ACC,	there	could	be	many	more	temporary	registers.		For	example,	the	ARM	
processor	in	the	Pyboard	has	16	registers	(including	one	for	the	PC).		In	addition	to	
the	ALU,	there	is	also	a	floating	point	unit	(FPU)	and	even	an	additional	
computational	engine	known	as	Adaptive	Real-Time	Accelerator	(ART).	
In	order	for	you	to	understand	how	a	CPU	does	its	job,	let	us	now	create	one	that	is	
very	simple	and	only	having	the	few	modules	shown	above.	

3 



This	simple	CPU	uses	instruction	code	that	has	16-bits.	
We	assume	that	there	is	only	8k	byte	of	memory	and	the	processor	is	a	16-bit	
processor	meaning	that	it	process	data	in	16-bit	words.		(ESP32	normally	process	
data	in	32-bits.)		Therefore	the	processor	memory	is	organised	as	4k	x	16	bits.		4k	
words	require	12	address	bits.	
Shown	here	is	the	format	of	the	instruction.	The	top	4	bits	are	used	to	specify	the	
operation	to	be	performed.		This	is	known	as	the	opcode.	
With	4-bit	opcode,	we	could	specify	16	operations,	but	we	will	only	create	8	
operations	with	opcode	going	from	0	to	7.	
The	remaining	lower	significant	12	bits	in	the	instruction	word	are	used	to	specify	
the	memory	address	for	the	operation	if	required.		We	will	see	what	that	means	in	
the	next	few	slides.	
	
	
	

	

4 



Here	is	our	simple	instruction	set	with	only	8	instructions.		Here	are	the	explanations	
for	all	8	instructions.	These	instructions	are	shown	as	three	letter	code	(known	as	
mnemonics)	to	indicate	what	each	instruction	is	suppose	to	do.	This	is	known	as	
Assembly	Language	program.			However,	the	CPU	can	only	understand	binary	code.		
Therefore	shown	here	are	the	opcodes	for	each	instructions	forming	the	4	most-
significant	bits	(MSBs).		Then	each	instruction	is	followed	by	a	12-bit	memory	
address	S.		The	binary	form	of	the	instruction	is	known	as	Machine	Code	program.	
LDA		S		-		Load	Accumulator	with	the	content	at	memory	location	S	
STO		S	-		Store	Accumulator	value	to	memory	location	S	
ADD		S	-		Add	the	data	in	memory	location	S	to	ACC	and	store	the	result	back	to	ACC	
SUB		S	-			Subtract	the	data	in	memory	location	S	from	ACC	and	store	the	result	back	

to	ACC	
JMP		S		-		Jump	to	instruction	at	memory	address	S	
JGE		S		-		Jump	to	instruction	at	memory	address	S	if	the	previous	ALU	operation	is	

greater	than	or	equal	to	zero					
JNE	S			-		Same	as	before	but	for	the	case	where	the	previous	ALU	operation	does	

not	equal	to	zero	

STP	-		Stop	the	processor.		Since	this	instruction	does	not	require	any	memory	
address,	it	only	uses	the	top	4-bits	of	the	instruction	word	

5 



Now	let	us	assume	that	at	memory	location	000	(hex)	to	003,	there	are	already	
stored	four	instructions.		Furthermore,	we	also	assume	that	in	memory	locations	
02E	and	02F	(in	hex	again)	stores	two	numbers	AAAA	and	1111	to	be	added	
together.		The	result	of	this	addition,	which	is	BBBB,	will	be	stored	back	to	memory	
location	030.	

Let	us	now	see	how	these	instructions	are	executed	by	the	CPU,	one	instruction	at	a	
time.	

6 



Firstly,	we	assume	that	we	start	from	PC	=	000,	i.e.	on	reset,	the	program	counter	is	
zeroed.	
This	means	that	the	PC	is	pointing	to	address	000	in	memory	where	the	first	
instruction	code	is	stored.		It	is	002E,	which	is	LDA	02E	instruction,	meaning	that	it	
should	read	the	16-bit	data	from	memory	location	02E	and	stores	this	in	the	
accumulator.	

So	in	the	first	clock	cycle,	the	PC	is	pushed	out	via	the	address	register	onto	the	
address	bus.		A	memory	read	operation	is	performed	and	the	instruction	code	002E	
is	fetched	and	put	into	the	instruction	register	IR.		This	is	the	instruction	fetch	cycle.	
The	opcode	part	(top	4-bits)	of	the	instruction	is	passed	through	the	instruction	
decoder	unit	and	the	CPU	is	ready	to	“execute”	the	opcode	by	performing	a	data-
read-from-memory	operation.	
This	operation	is	done	in	the	second	clock	cycle.	
The	bottom	12-bit	of	the	instruction	stored	in	IR,	02E,		is	now	pushed	to	the	address	
register	then	onto	the	address	bus.		The	data	stored	at	location	02E	(which	is	AAAA)	
is	read	from	this	memory	location	and	stored	in	ACC.	
Now	something	else	ALWAYS	happens.		After	the	PC	is	used	to	fetch	an	instruction,	
its	value	is	ALWAYS	automatically	incremented.		In	other	words,	the	PC	always	
counts	up	once	it	is	used	(hence	the	name	program	counter).		This	is	because	we	
want	it	to	always	point	to	the	next	instruction.			

7 



The	second	instruction	is	to	add	the	previously	fetch	data	to	the	data	stored	in	
memory	location	02F.	
Again	in	the	first	clock	cycle,	the	PC	value	is	send	to	the	address	bus,	and	the	
instruction	code	202F	is	fetched	and	stored	in	IR	as	shown.	
On	the	next	cycle,	the	opcode	(2)	is	decoded	by	the	CPU	and	force	an	add	operation	
to	be	performed.	This	involves	the	CPU	sending	the	lower	12-bit	of	the	instruction	
code	(02F)	to	the	address	bus	and	performs	a	memory	read.	The	data	from	memory	
02F	(i.e.	1111)	is	send,	together	with	the	value	stored	in	ACC,	to	the	ALU	and	the	
opcode	tells	the	ALU	to	do	an	addition.		The	result	BBBB	is	stored	back	to	ACC.	

8 



In	this	instruction,	the	contents	of	ACC	is	stored	to	memory	location	030.	
Finally,	the	last	instruction	is	to	tell	the	CPU	to	stop.		This	instruction	does	not	involve	any	
memory	read	AFTER	fetching	the	instruction.		It	therefore	only	use	the	top	four	bit	of	the	
instruction	for	opcode,	and	it	only	takes	one	clock	cycle.		This	is	shown	on	the	next	slide.	
To	summarise	
The	operation	of	most	processors	are	governed	by	a	clock	signal.	For	this	simple	CPU,	we	
assume	that:	
1.  The	number	of	clock	cycles	taken	by	an	instruction	is	the	same	as	the	number	of	

memory	access	it	makes.	
2.  LDA,	STO,	ADD,	SUB	therefore	takes	2	clock	cycles	each:	one	to	fetch	(and	decode)	

the	instruction,	a	second	to	fetch	(and	operate	on)	the	data	
3.  JMP,	JGE,	JNE,	STP	only	need	one	memory	read	and	therefore	can	be	executed	in	one	

clock	cycle.	
4.  Program	counter	(PC)	-	its	content	is	incremented	every	time	it	is	used	(i.e.	it	also	

points	to	the	next	instruction).	
5.  The	processor	must	start	from	a	known	state.		Therefore,	there	is	always	a	reset	

signal	to	initialise	the	processor	on	power-up.	

6.  Assume	MU0	will	always	reset	to	start	execution	from	address	00016.	
	
	

9 



8.  Microprocessors	performs	operations	depending	on	instruction	codes	stored	
in	memory	

9.  Instruction	usually	has	two	parts:	
•  Opcode	-	determines	what	is	to	be	done	
•  Operand	-	specifies	where/what	is	the	data	

10.  Memory	contains	both	program	and	data.		A	peek	into	memory	will	tell	you	
very	little	except	a	bunch	of	‘1’s	and	‘0’s	

11.  Program	area	and	data	area	in	memory	are	usually	well	separated	
12.  ALU	is	responsible	for	arithmetic	and	logic	operations	
13.  There	is	always	at	least	one	register	known	as	accumulator	where	the	result	

from	ALU	is	stored	
14.  There	is	usually	one	or	more	general	purpose	register	for	storing	results	or	

memory	addresses	temporarily	
15.  Fetching	data	from	inside	the	CPU	is	much	faster	than	from	external	memory	

10 



This	video	explains	how	a	CPU	or	a	microprocessor	is	made.	You	can	find	this	video	
on	youtube:	
	
https://www.youtube.com/watch?v=qm67wbB5GmI	
	

11 


